Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.242
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612869

ABSTRACT

Cyclin-dependent kinases (CDK2, CDK4, CDK6), cyclin D1, cyclin E1 and phosphorylated retinoblastoma (pRB1) are key regulators of the G1/S cell cycle checkpoint and may influence platinum response in ovarian cancers. CDK2/4/6 inhibitors are emerging targets in ovarian cancer therapeutics. In the current study, we evaluated the prognostic and predictive significance of the CDK2/4/6-cyclin D1/E1-pRB1 axis in clinical ovarian cancers (OC). The CDK2/4/6, cyclin D1/E1 and RB1/pRB1 protein expression were investigated in 300 ovarian cancers and correlated with clinicopathological parameters and patient outcomes. CDK2/4/6, cyclin D1/E1 and RB1 mRNA expression were evaluated in the publicly available ovarian TCGA dataset. We observed nuclear and cytoplasmic staining for CDK2/4/6, cyclins D1/E1 and RB1/pRB1 in OCs with varying percentages. Increased nuclear CDK2 and nuclear cyclin E1 expression was linked with poor progression-free survival (PFS) and a shorter overall survival (OS). Nuclear CDK6 was associated with poor OS. The cytoplasmic expression of CDK4, cyclin D1 and cyclin E1 also has predictive and/or prognostic significance in OCs. In the multivariate analysis, nuclear cyclin E1 was an independent predictor of poor PFS. Tumours with high nuclear cyclin E1/high nuclear CDK2 have a worse PFS and OS. Detailed bioinformatics in the TCGA cohort showed a positive correlation between cyclin E1 and CDK2. We also showed that cyclin-E1-overexpressing tumours are enriched for genes involved in insulin signalling and release. Our data not only identified the prognostic/predictive significance of these key cell cycle regulators but also demonstrate the importance of sub-cellular localisation. CDK2 targeting in cyclin-E1-amplified OCs could be a rational approach.


Subject(s)
Ovarian Neoplasms , Retinal Neoplasms , Retinoblastoma , Female , Humans , Carcinoma, Ovarian Epithelial , Cyclin D1/genetics , Ovarian Neoplasms/genetics , Cyclin-Dependent Kinase 2/genetics , Ubiquitin-Protein Ligases , Retinoblastoma Binding Proteins/genetics
2.
Bioorg Med Chem ; 104: 117711, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38583237

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) is a member of CDK family of kinases (CDKs) that regulate the cell cycle. Its inopportune or over-activation leads to uncontrolled cell cycle progression and drives numerous types of cancers, especially ovarian, uterine, gastric cancer, as well as those associated with amplified CCNE1 gene. However, developing selective lead compound as CDK2 inhibitors remains challenging owing to similarities in the ATP pockets among different CDKs. Herein, we described the optimization of compound 1, a novel macrocyclic inhibitor targeting CDK2/5/7/9, aiming to discover more selective and metabolically stable lead compound as CDK2 inhibitor. Molecular dynamic (MD) simulations were performed for compound 1 and 9 to gain insights into the improved selectivity against CDK5. Further optimization efforts led to compound 22, exhibiting excellent CDK2 inhibitory activity, good selectivity over other CDKs and potent cellular effects. Based on these characterizations, we propose that compound 22 holds great promise as a potential lead candidate for drug development.


Subject(s)
Protein Kinase Inhibitors , Cyclin-Dependent Kinase 2 , Protein Kinase Inhibitors/pharmacology , Cell Cycle , Phosphorylation
3.
Cancer Discov ; 14(3): 386-388, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426558

ABSTRACT

SUMMARY: In this issue, Dietrich, Trub, and colleagues describe and characterize a novel selective CDK2 inhibitor: INX-315. This agent shows promise in CCNE1-amplified cancers and in CDK4/6 inhibitor-resistant breast cancers. See related article by Dietrich et al., p. 446 (8).


Subject(s)
Breast Neoplasms , Humans , Female , Cyclin-Dependent Kinase 2/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics
4.
Bioorg Chem ; 146: 107285, 2024 May.
Article in English | MEDLINE | ID: mdl-38547721

ABSTRACT

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Subject(s)
Cyclin-Dependent Kinases , Protein Kinase Inhibitors , Structure-Activity Relationship , Cyclin-Dependent Kinase 2/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Design , Drug Discovery
5.
Toxicol Appl Pharmacol ; 484: 116877, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38431228

ABSTRACT

Breast cancer, the most common cancer, presents a significant challenge to the health and longevity of women. Aspongopus chinensis Dallas is an insect with known anti-breast cancer properties. However, the anti-breast cancer effects and underlying mechanisms have not been elucidated. Exogenous microRNAs (miRNAs), which are derived from plants and animals, have been revealed to have notable capacities for controlling the proliferation of cancerous cells. To elucidate the inhibitory effects of miRNAs derived from A. chinensis and the regulatory mechanism involved in the growth of breast cancer cells, miRNA sequencing was initially employed to screen for miRNAs both in A. chinensis hemolymph and decoction and in mouse serum and tumor tissue after decoction gavage. Subsequently, the experiments were performed to assess the suppressive effect of ach-miR-276a-3p, the miRNA screened out from a previous study, on the proliferation of MDA-MB-231 and MDA-MB-468 breast cancer cell lines in vitro and in vivo. Finally, the regulatory mechanism of ach-miR-276a-3p in MDA-MB-231 and MDA-MB-468 breast cancer cells was elucidated. The results demonstrated that ach-miR-276a-3p notably inhibited breast cancer cell proliferation, migration, colony formation, and invasion and induced cell cycle arrest at the G0/G1 phase. Moreover, the ach-miR-276a-3p mimics significantly reduced the tumor volume and weight in xenograft tumor mice. Furthermore, ach-miR-276a-3p could induce cell cycle arrest by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway. In summary, ach-miR-276a-3p, derived from A. chinensis, has anti-breast cancer activity by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway and can serve as a promising candidate anticancer agent.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Animals , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Cycle Checkpoints , Signal Transduction , Gene Expression Regulation, Neoplastic , Cyclin-Dependent Kinase 2/genetics , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Adaptor Proteins, Signal Transducing/metabolism
6.
Methods Mol Biol ; 2754: 271-306, 2024.
Article in English | MEDLINE | ID: mdl-38512672

ABSTRACT

Posttranslational modifications (PTMs) of proteins can be investigated by Nuclear Magnetic Resonance (NMR) spectroscopy as a powerful analytical tool to define modification sites, their relative stoichiometry, and crosstalk between modifications. As a Structural Biology method, NMR provides important additional information on changes in protein conformation and dynamics upon modification as well as a mapping of binding sites upon biomolecular interactions. Indeed, PTMs not only mediate functional modulation in protein-protein interactions, but can also induce diverse structural responses with different biological outcomes. Here we present protocols that have been developed for the production and phosphorylation of the neuronal tau protein. Under its aggregated form, tau is a hallmark of Alzheimer's disease and other neurodegenerative diseases named tauopathies involving tau dysfunction and/or mutations. As a common feature shared by various tauopathies, tau aggregates are found into a form displaying an increased, abnormal phosphorylation, also referred to hyperphosphorylation. We have used NMR to investigate the phosphorylation patterns of tau induced by several kinases or cell extracts, how phosphorylation affects the local and overall conformation of tau, its interactions with partners (proteins, DNA, small-molecules, etc.) including tubulin and microtubules, and its capacity to form insoluble fibrillar aggregates. We present here detailed protocols for in vitro phosphorylation of tau by the recombinant kinases CDK2/cyclin A and GSK3ß, the production of the recombinant kinases thereof, as well as the analytical characterization of phosphorylated tau by NMR spectroscopy.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Phosphorylation , Glycogen Synthase Kinase 3 beta/metabolism , Cyclin A/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Alzheimer Disease/metabolism , Magnetic Resonance Spectroscopy , Cyclin-Dependent Kinase 2/genetics
7.
Crit Rev Oncol Hematol ; 196: 104324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462150

ABSTRACT

Aberrant cyclin-dependent kinase 2 (CDK2) activation has been identified as a main resistance mechanism to CDK4/6 inhibition in hormone-receptor positive (HR+) breast cancer. Additionally, consistent preclinical evidence states its crucial role in MYC and CCNE1 overexpressed cancer survival, such as triple-negative breast cancers (TNBC), thus representing an appealing and relatively unexplored target treatment opportunity. Despite emerging initial results of novel CDK2 inhibitors (CDK2i) activity, a comprehensive outcomes collection is currently absent from the scientific literature. We aim to provide an overview of ongoing clinical trials involving CDK2i in the context of metastatic breast cancer (mBC), either as monotherapy or in combination with other agents. The review extends beyond CDK2i to encompass novel emerging CDK4 inhibitors, combined CDK2/4/6 inhibitors, and the well-known pan-CDK inhibitors including those specifically directed at CDK2. Delving into the results, we critically appraise the observed clinical efficacy and offer valuable insights into their potential impact and future applications.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Cycle Checkpoints , Triple Negative Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 6
8.
Sci Rep ; 14(1): 3084, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38321062

ABSTRACT

A new series of furo[2,3-b]indol-3a-ol derivatives was synthesized to investigate their potential as inhibitors of the Cyclin-dependent kinase 2 (CDK2) enzyme. CDK2 is a serine/threonine protein kinase belonging to a family of kinases involved in the control of the cell cycle. Based on results from clinical studies, it has been shown that overexpression of CDK2 may play a role in the development of cancer. In order to discover highly effective derivatives, a process of in silico screening was carried out. The obtained results revealed that compound 3f. had excellent binding energies. In this study, in silico screening was used to investigate protein-ligand interactions and assess the stability of the most favorable conformation. The methods utilized included molecular docking, density functional theory (DFT) calculations using the B3LYP/6-31++G(d,p) basis set in the gas phase, molecular dynamic (MD) simulation, as well as the evaluation of drug-likeness scores. The pharmacokinetic and drug-likeness properties of the novel furo[2,3-b]indol-3a-ol derivatives suggest that these compounds have the potential to be considered viable candidates for future development as anticancer drugs.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Molecular Docking Simulation , Cyclin-Dependent Kinase 2/metabolism , Molecular Conformation , Protein Binding , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Molecular Structure
9.
Drug Dev Res ; 85(2): e22163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419305

ABSTRACT

In the present work, five series of new 2,3-disubstituted quinazolin-4(3H)-ones 4a-c, 5a-d, 6a-g, 7a,b, and 9a-c were designed, synthesized, and screened in vitro for their cytotoxic activity against 60 cancer cell lines by the National Cancer Institute, USA. Five candidates 4c, 6a, 6b, 6d, and 6g revealed promising cytotoxicity with significant percentage growth inhibition in the range of 81.98%-96.45% against the central nervous system (CNS) (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The in vitro cytotoxic half maximal inhibitory concentration (IC50 ) values for the most active compounds 4c, 6a, 6b, 6d, and 6g against the most sensitive cell lines were evaluated. Additionally, screening their cyclin-dependent kinase 2 (CDK2) inhibitory activity was performed. Ortho-chloro-benzylideneamino derivative 6b emerged as the most potent compound with IC50 = 0.67 µM compared to Roscovitine (IC50 = 0.64 µM). The most active candidates arrested the cell cycle at G1, S phases, or both, leading to cell death and inducing apoptosis against CNS (SNB-19), melanoma (MDA-MB-435), and non-small cell lung cancer (HOP-62) cell lines. The molecular docking study verified the resulting outcomes for the most active candidates in the CDK2-binding pocket. Finally, physicochemical, and pharmacokinetic properties deduced that compounds 4c, 6a, 6b, 6d, and 6g displayed significant drug-likeness properties. According to the obtained results, the newly targeted compounds are regarded as promising scaffolds for the continued development of novel CDK2 inhibitors.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Melanoma , Humans , Structure-Activity Relationship , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Molecular Docking Simulation , Melanoma/drug therapy , Drug Screening Assays, Antitumor , Cell Proliferation , Antineoplastic Agents/chemistry , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Cyclin-Dependent Kinase 2/metabolism
10.
Chin J Nat Med ; 22(2): 112-126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342564

ABSTRACT

The tumor suppressor protein p53 is central to cancer biology, with its pathway reactivation emerging as a promising therapeutic strategy in oncology. This study introduced LZ22, a novel compound that selectively inhibits the growth, migration, and metastasis of tumor cells expressing wild-type p53, demonstrating ineffectiveness in cells devoid of p53 or those expressing mutant p53. LZ22's mechanism of action involves a high-affinity interaction with the histidine-96 pocket of the MDM2 protein. This interaction disrupted the MDM2-p53 binding, consequently stabilizing p53 by shielding it from proteasomal degradation. LZ22 impeded cell cycle progression and diminished cell proliferation by reinstating the p53-dependent suppression of the CDK2/Rb signaling pathway. Moreover, LZ22 alleviated the p53-dependent repression of Snail transcription factor expression and its consequent EMT, effectively reducing tumor cell migration and distal metastasis. Importantly, LZ22 administration in tumor-bearing mice did not manifest notable side effects. The findings position LZ22 as a structurally unique reactivator of p53, offering therapeutic promise for the management of human cancers with wild-type TP53.


Subject(s)
Transcription Factors , Tumor Suppressor Protein p53 , Mice , Humans , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Proliferation , Transcription Factors/genetics , Transcription Factors/metabolism , Signal Transduction , Cyclin-Dependent Kinase 2/metabolism
11.
Int Ophthalmol ; 44(1): 55, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342795

ABSTRACT

BACKGROUND: Uveal melanoma (UVM) is an aggressive malignant tumor originating from melanocytes in the eye. Here, we screened the possible genes involved in the development and prognosis of UVM, and identified that FOXM1 and MET were associated with the prognosis of UVM patients. Forkhead box protein M1 (FOXM1) is a transcription factor that regulates the expression of cell cycle-related genes that are necessary for DNA duplication. However, the regulatory mechanism of FOXM1 in UVM was still not clear. Here, we investigated the regulation of FOXM1 in the malignant phenotype of UVM cells and its effect on the prognosis of UVM patients. METHODS: UVM gene expression profiles were obtained using GSE22138 data from the gene expression omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) was used to construct a key module gene for metastasis, which was strongly correlated with UVM prognosis. The latent biological pathways were identified through gene ontology analysis. Protein-protein interaction (PPI) networks and hub shared gene authentication were performed. GEPIA and UALCAN databases were used for the analysis of relationship between candidate genes (FOXM1 or MET) and the prognosis of UVM patients. The abundance of FOXM1 was examined by quantitative real time polymerase chain reaction (qRT-PCR) and western blot. Colony formation and cell counting kit-8 (CCK-8) assays for cell proliferation, wound healing assay for migration, and transwell invasion analysis for invasion were performed. RESULTS: GEO database showed the differentially expressed genes between UVM samples with or without metastasis, and a key module gene for metastasis was constructed by WGCNA. The PPI network revealed that seven candidate genes (VEGFA, KRAS, MET, SRC, EZR, FOXM1, and CCNB1) were closely associated with UVM metastasis. GEPIA and UALCAN analyzes suggested that FOXM1 and MET are related to the prognosis of patients with UVM. These experimental results suggested that FOXM1 was highly expressed in UVM cells. FOXM1 deficiency represses the proliferative, migratory, and invasive abilities of UVM cells. CONCLUSIONS: FOXM1 silencing may hinder UVM cell progression, providing a novel theoretical basis and new insights for UVM treatment.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Melanoma/metabolism , Uveal Neoplasms/genetics , Cell Proliferation , Cyclin-Dependent Kinase 2/genetics
12.
J Med Chem ; 67(4): 3112-3126, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38325398

ABSTRACT

CDK2 is a critical regulator of the cell cycle. For a variety of human cancers, the dysregulation of CDK2/cyclin E1 can lead to tumor growth and proliferation. Historically, early efforts to develop CDK2 inhibitors with clinical applications proved unsuccessful due to challenges in achieving selectivity over off-target CDK isoforms with associated toxicity. In this report, we describe the discovery of (4-pyrazolyl)-2-aminopyrimidines as a potent class of CDK2 inhibitors that display selectivity over CDKs 1, 4, 6, 7, and 9. SAR studies led to the identification of compound 17, a kinase selective and highly potent CDK2 inhibitor (IC50 = 0.29 nM). The evaluation of 17 in CCNE1-amplified mouse models shows the pharmacodynamic inhibition of CDK2, measured by reduced Rb phosphorylation, and antitumor activity.


Subject(s)
Cyclin-Dependent Kinases , Neoplasms , Animals , Humans , Mice , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4/metabolism , Phosphorylation , Pyrimidines/pharmacology , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrazoles/pharmacology
13.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297099

ABSTRACT

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Cyclin-Dependent Kinase 2 , Diabetes Mellitus , Diabetic Retinopathy , Animals , Mice , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Endothelial Cells/metabolism , Retina/metabolism , RNA , Zebrafish/genetics
14.
Chem Biol Drug Des ; 103(1): e14422, 2024 01.
Article in English | MEDLINE | ID: mdl-38230772

ABSTRACT

Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 µM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 µM compared to IC50 of 1.10 µM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.


Subject(s)
Antineoplastic Agents , Humans , Molecular Structure , Structure-Activity Relationship , Cell Proliferation , Cell Line, Tumor , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , ErbB Receptors/metabolism , Doxorubicin/pharmacology , Protein Kinase Inhibitors/pharmacology , Molecular Docking Simulation , Cyclin-Dependent Kinase 2/metabolism
15.
Future Med Chem ; 16(4): 369-388, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38288571

ABSTRACT

Cyclin-dependent kinases (CDKs) play an important role in the regulation of cell proliferation, and many CDK inhibitors were developed. However, pan-CDK inhibitors failed to be approved due to intolerant toxicity or low efficacy and the use of selective CDK4/6 inhibitors is limited by resistance. Protein degraders have the potential to increase selectivity, efficacy and overcome resistance, which provides a novel strategy for regulating CDKs. In this review, we summarized the function of CDKs in regulating the cell cycle and transcription, and introduced the representative CDK inhibitors. Then we made a detailed introduction about four types of CDKs degraders, including their action mechanisms, research status and application prospects, which could help the development of novel CDKs degraders.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cyclin-Dependent Kinases , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Cycle Checkpoints , Cell Cycle , Neoplasms/drug therapy , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Cyclin-Dependent Kinase 2
16.
Cancer Discov ; 14(3): 446-467, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38047585

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) is thought to play an important role in driving proliferation of certain cancers, including those harboring CCNE1 amplification and breast cancers that have acquired resistance to CDK4/6 inhibitors (CDK4/6i). The precise impact of pharmacologic inhibition of CDK2 is not known due to the lack of selective CDK2 inhibitors. Here we describe INX-315, a novel and potent CDK2 inhibitor with high selectivity over other CDK family members. Using cell-based assays, patient-derived xenografts (PDX), and transgenic mouse models, we show that INX-315 (i) promotes retinoblastoma protein hypophosphorylation and therapy-induced senescence (TIS) in CCNE1-amplified tumors, leading to durable control of tumor growth; (ii) overcomes breast cancer resistance to CDK4/6i, restoring cell cycle control while reinstating the chromatin architecture of CDK4/6i-induced TIS; and (iii) delays the onset of CDK4/6i resistance in breast cancer by driving deeper suppression of E2F targets. Our results support the clinical development of selective CDK2 inhibitors. SIGNIFICANCE: INX-315 is a novel, selective inhibitor of CDK2. Our preclinical studies demonstrate activity for INX-315 in both CCNE1-amplified cancers and CDK4/6i-resistant breast cancer. In each case, CDK2 inhibition induces cell cycle arrest and a phenotype resembling cellular senescence. Our data support the development of selective CDK2 inhibitors in clinical trials. See related commentary by Watts and Spencer, p. 386. This article is featured in Selected Articles from This Issue, p. 384.


Subject(s)
Breast Neoplasms , Animals , Mice , Humans , Female , Cyclin-Dependent Kinase 2/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Cycle Checkpoints , Cellular Senescence , Chromatin , Cyclin-Dependent Kinase Inhibitor Proteins , Mice, Transgenic
17.
Bioorg Chem ; 143: 107045, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38147786

ABSTRACT

One of the leading causes of mortality in the world is cancer. This disease occurs when responsible genes that regulate the cell cycle become inactive due to internal or external factors. Specifically, the G1/S and S/G2 transitions in the cell cycle are controlled by a protein called cyclin-dependent kinase 2 (CDK2). CDKs, which play a crucial role in managing the cell cycle, have been a wide area of research in cancer treatment. Over the past 11 years, significant research has been made in identifying potent, targeted, and efficient inhibitors of CDK2. In this summary, we have summarized recent developments in the synthesis and biological evaluation of CDK2 inhibitors.


Subject(s)
CDC2-CDC28 Kinases , Neoplasms , Cyclin-Dependent Kinase 2 , Protein Serine-Threonine Kinases , Cyclin-Dependent Kinases , Cell Cycle Proteins , Cell Cycle , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy
18.
Bioorg Chem ; 143: 107019, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096683

ABSTRACT

The discovery and development of CDK2 inhibitors has currently been validated as a hot topic in cancer therapy. Herein, a series of novel N-(pyridin-3-yl)pyrimidin-4-amine derivatives were designed and synthesized as potent CDK2 inhibitors. Among them, the most promising compound 7l presented a broad antiproliferative efficacy toward diverse cancer cells MV4-11, HT-29, MCF-7, and HeLa with IC50 values of 0.83, 2.12, 3.12, and 8.61 µM, respectively, which were comparable to that of Palbociclib and AZD5438. Interestingly, these compounds were less toxic on normal embryonic kidney cells HEK293 with high selectivity index. Further mechanistic studies indicated 7l caused cell cycle arrest and apoptosis on HeLa cells in a concentration-dependent manner. Moreover, 7l manifested potent and similar CDK2/cyclin A2 nhibitory activity to AZD5438 with an IC50 of 64.42 nM. These findings revealed that 7l could serve as ahighly promisingscaffoldfor CDK2 inhibitors as potential anticancer agents and functional probes.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cyclin-Dependent Kinase 2 , Structure-Activity Relationship , Cell Line, Tumor , HeLa Cells , Amines/pharmacology , HEK293 Cells , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor , Neoplasms/drug therapy
19.
Cell Rep ; 42(12): 113539, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38070134

ABSTRACT

Amino acids are required for cell growth and proliferation, but it remains unclear when and how amino acid availability impinges on the proliferation-quiescence decision. Here, we used time-lapse microscopy and single-cell tracking of cyclin-dependent kinase 2 (CDK2) activity to assess the response of individual cells to withdrawal of single amino acids and found strikingly different cell-cycle effects depending on the amino acid. For example, upon leucine withdrawal, MCF10A cells complete two cell cycles and then enter a CDK2-low quiescence, whereas lysine withdrawal causes immediate cell-cycle stalling. Methionine withdrawal triggers a restriction point phenotype similar to serum starvation or Mek inhibition: upon methionine withdrawal, cells complete their current cell cycle and enter a CDK2-low quiescence after mitosis. Modulation of restriction point regulators p21/p27 or cyclin D1 enables short-term rescue of proliferation under methionine and leucine withdrawal, and to a lesser extent lysine withdrawal, revealing a checkpoint connecting nutrient signaling to cell-cycle entry.


Subject(s)
CDC2-CDC28 Kinases , Cell Cycle Proteins , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Amino Acids , Leucine , Lysine , Cell Cycle , Cyclin-Dependent Kinase 2/metabolism , Cell Cycle Checkpoints , Mitosis , Methionine , CDC2-CDC28 Kinases/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism
20.
Proc Natl Acad Sci U S A ; 120(48): e2310522120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983497

ABSTRACT

With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.


Subject(s)
Cyclin-Dependent Kinases , Neoplasms , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclins/metabolism , Cell Cycle/genetics , Enzyme Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...